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Semi-supervised Domain Adaptation on Manifolds
Li Cheng, Senior Member, IEEE, and Sinno Jialin Pan

Abstract— In real-life problems, the following semi-supervised
domain adaptation scenario is often encountered: we have full
access to some source data, which is usually very large; the target
data distribution is under certain unknown transformation of the
source data distribution; meanwhile, only a small fraction of the
target instances come with labels. The goal is to learn a prediction
model by incorporating information from the source domain that
is able to generalize well on the target test instances. We consider
an explicit form of transformation functions and especially linear
transformations that maps examples from the source to the target
domain, and we argue that by proper preprocessing of the data
from both source and target domains, the feasible transformation
functions can be characterized by a set of rotation matrices. This
naturally leads to an optimization formulation under the special
orthogonal group constraints. We present an iterative coordinate
descent solver that is able to jointly learn the transformation as
well as the model parameters, while the geodesic update ensures
the manifold constraints are always satisfied. Our framework is
sufficiently general to work with a variety of loss functions and
prediction problems. Empirical evaluations on synthetic and real-
world experiments demonstrate the competitive performance of
our method with respect to the state-of-the-art.

Index Terms— Domain adaptation, semi-supervised learning,
transfer learning.

I. INTRODUCTION

SUPERVISED learning methods have been shown to
perform well on many real-world applications, such as

computer vision, natural language processing (NLP), to name
a few. However, these methods usually assume the test data are
drawn from the same distribution as the training data, and often
fail to make satisfactory predictions on novel domains. Domain
adaptation algorithms, on the other hand, aims to address such
learning scenarios where a very few or even no labeled data
are available in a related target domain. This is often realized
by having access to a sufficient amount of labeled training data
from source domains, even when these domains have different
data distributions. The methods have been empirically [1]–[3]
as well as theoretically [4], [5] studied for these cross-domain
learning problems.

In domain adaptation [6], a key research challenge is how to
learn a proper feature representation for both source and target
domains such that training data from both domains can be used
to address the prediction task in the target domain, including,
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for example, cross-domain object recognition where the source
and target domains are from different image modalities, or
cross-domain WiFi localization where the source and target
domains refer to data collected from different time periods.
Blitzer et al. [7] proposed structural correspondence learning
(SCL) to learn common features by inducing correspondences
among features from different domains. SCL is motivated
by a multitask learning algorithm [8] to select pivot fea-
tures between the source and target domains, to construct
pseudotasks for building correspondences among the features.
Daumé [1] proposed a feature augmentation (FA) method
for domain adaptation in NLP, which augments the source
domain feature space using features from a few labeled data
in the target domain. Pan et al. [3] proposed a dimensionality
reduction method to learn a latent space underlying different
domains, by reducing distance of data distributions between
the domains while still preserving data variance and local
structure. Most of the previous methods can be either referred
to as unsupervised domain adaptation approaches [3], [7],
which do not take label information into consideration when
learning the feature representation, or as supervised domain
adaptation approaches [1], which only use labeled data from
the source and target domains.

In this paper, we consider the relatively less-explored par-
adigm of semi-supervised domain adaptation, which is to
leverage both labeled and unlabeled data in the target domain,
as well as labeled data in the source domain. Daumé et al. [9]
extended FA in a semi-supervised manner (semi-FA), which
builds on the notion of augmented feature space proposed
by FA and harnesses unlabeled data in the target domain to
further assist knowledge transfer from the source domain to
the target domain. Donahue et al. [10] advocated the usage
of known constraints from unlabeled instances to facilitate
object detection and classification tasks with additional source
domain data. A semi-supervised feature extraction method,
semi-supervised transfer component analysis or SSTCA, was
developed in [11] where extensive empirical results on text
classification and WiFi localization are shown. Nevertheless,
both semiFA and SSTCA are two-step approaches to domain
adaptation, which first learn the feature representation across
the domains, and models are subsequently trained based on
this feature to make prediction on the target domain. The work
of [12] considers transferring learning across the multiple tasks
under a semi-supervised Bayesian scenario. In addition, [13]
provides a systematic coverage of semi-supervised learning.

We propose a novel semi-supervised domain adaptation
framework that explicitly considers the mapping or transfor-
mation function from the source to the target feature space.
While being capable of working with nonlinear transformation,
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in this paper, we will mainly focus on linear transformation.
More specifically, we consider the scenarios where after proper
preprocessing (including mean subtraction and normalization
by scaling), the set of feasible transformations are closed
under rotation, i.e., the orthogonal group constraints. We
then develop a manifold-based gradient descent algorithm
that is able to jointly learn the model parameters and the
transformation, and demonstrate its capacity of working with
a variety of loss functions and prediction (i.e., classification
and regression) problems.

Related to our method are the metric learning approaches
for domain adaptation for the tasks of object recognition
[14], [15]. The main idea is to learn a transformation from
source to target using learning the metrics with explicit cross-
domain constraints. Once the transformation is learned, clas-
sifiers are trained on the source domain data, then used to
make predictions on new instances from the transformed target
domain. Different from this line of approaches where only
labeled data from target domain are considered, our framework
exploits both labeled and unlabeled data in the target domain,
to learn the transformation from source to target. Furthermore,
our framework is able to learn the transformation and the
model parameters simultaneously instead of learning them
separately. It is worth pointing out that the geodesic update
adopted by our algorithm guarantees the manifold constraints
are always satisfied, while it is clearly not the case for the
metric learning methods where there are no specific constraints
on the set of feasible transformations. Domain adaptation
machine (DAM) [16] is another related work, which is a
semi-supervised extension of SVMs for domain adaptation.
In DAM, the knowledge carried by the source domain is
implicitly encoded in a data-dependent regularization term
instead of explicit transformation, which may not be able to
fully explore the source domain knowledge during the adap-
tation process. Furthermore, DAM is customized for SVMs,
while our method works with a range of loss functions.

II. PREPARATION

A. Graph Laplacian

A graph G consists of an ordered and finite set of n vertices
(i.e., instances) X , and a finite set of edges E each connecting
pairs of these instances. A vertex xi is said to be a neighbor of
another vertex xj if they are connected by an edge. G is said to
be undirected if (xi, xj) ∈ E ⇐⇒ (xj , xi) ∈ E for all edges.
The weighted adjacency matrix of G is an n× n real matrix
ψ with ψij ∈ (0,∞) if (xi, xj) ∈ E, and 0 otherwise. Let D,
the degree matrix, be an n × n diagonal matrix with entries
Dii =

∑
j ψij . The graph Laplacian is the matrix L = D−ψ

while the normalized graph Laplacian ΔG := D−1/2LD−1/2.
In what follows, we briefly recall the related notions of

matrix manifold and matrix Lie group. Motivated readers can
refer to [17] and [18, Ch. 20] for further details.

B. Special Orthogonal Group

Define the set of d× d orthonormal matrices as SO(d) :=
{Φ ∈ Rd×d : ΦΦ� = Φ�Φ = Id, det(Φ) = 1}, where Id

is an identity matrix of size d × d. It is a matrix Lie group,
being a matrix group as well as a differentiable manifold that
can be locally approximated by a set of Euclidean spaces.
Consider an arbitrary point Φ ∈ SO(d). To perform differential
calculus, define the tangent space at Φ as TΦSO(d), which
is a subset of d × d matrices. It is easy to check Φ�ρ =
−ρ�Φ for any tangent vector ρ ∈ TΦSO(d). That is, Φ�ρ
is skew-symmetric.1 Define its metric as an inner product
〈ρ1, ρ2〉 = trace(ρ�1 ρ2) for any ρ1, ρ2 ∈ TΦSO(d). With the
metric definition we have a Riemannian manifold. Now, given
a differentiable function l mapping from Φ ∈ SO(d) to R, and
∇Φl its gradient in the local Euclidean space (also a matrix
of d × d), its Riemannian gradient ∇̃Φl ∈ TSO(d) on the
embedded manifold is computed as

∇̃Φl := ∇Φl − Φ∇Φl
�Φ. (1)

In a nutshell, it projects the Euclidean gradient onto the
current tangent space. Denote a skew-symmetrization operator
skew(A) = A − A� for any square matrix A. It is easy to
check that Φ�∇̃Φl = skew(Φ�∇Φl) always holds true.

C. Exponential Map, Retraction

Intuitively, retractions generalize the notion of moving in
the direction of a vector in Euclidean space to manifolds. An
ideal retraction is the exponential map. In our context, the
exponential map at point Φ, RΦ(ρ), maps a tangent vector ρ ∈
TΦSO(d) to a point in the manifold SO(d), as projecting along
a geodesic curve started at Φ in the direction of ρ. In practice,
usually a computationally less demanding retraction is used
instead of the exact exponential map. Formally, a retraction on
a manifold SO(d) at point Φ is a function RΦ : TΦSO(d)→
SO(d) that satisfies two properties [19]. 1) RΦ(0) = Φ.
2) The geodesic curve defined by γΦ(t) := RΦ(tρ) satisfies
γ̇Φ(0) = ρ. In general, a retraction can approximate the
exponential map at least to its first-order Taylor expansion
[19, Sec. IV].

III. OUR APPROACH

During training phase, we have access to the source
domain X̂ = (x̂1, . . . , x̂n̂) a set of instances, and Ŷ =
(ŷ1, . . . , ŷn̂) their corresponding labels. Assume, we are also
presented with a related target domain that contains a set
of partially labeled examples: X = (x1, . . . , xm, . . . , xn)
and the labels Y = (y1, . . . , ym), where m 
 n. The
labels from both domains usually share the same output
space, as ŷ, y ∈ Y , meanwhile the instances from both
domains might reside in different spaces. To simplify the
matter, we start by assuming X̂ and X reside in spaces of
the same dimensions, and they are related under a linear
transformation, denoted as Φ. In other words, there exists
a mapping function Φ̂ such that for any x̂ ∈ X̂ , the pair
(Φ̂(x̂), ŷ) will be a proper example in the target domain, with
Φ̂(x̂) := Φx̂. A preprocessing step is applied to the input
instances, which involves a simple translation and scaling

1In particular, for identity Id ∈ SO(d), its tangent space spans the set of
d × d skew-symmetric matrices.
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process to prepare both source and target examples into a zero-
mean unit hypersphere for both domains, respectively. After
this preprocessing step, we argue that the transformation Φ
now belongs to the set of nonsingular rotational matrices that
satisfies orthonormal constraints, ΦΦ� = I, Φ�Φ = I . As
such an orthogonal matrix has determinant either 1 or −1,
we further restrict to the subgroup containing identity I (i.e.,
having determinant 1), which is the special orthogonal group.

Now, let us revisit the general setting where the two
domains are of different dimensional and are related with
a nonlinear transformation, which can still be dealt with by
our approach under a polynomial feature space expansion:
for example, each source instance x can be lifted to a high
d̂-dimensional vector space by considering e.g., monomial
basis x(i), x(i)x(i), x(i)x(j), . . . , up to order D. Note x(i) and
x(j) are used to refer to the ith and jth dimension of an
instance x, respectively. This is followed by a linear map from
d̂- to d-dimensional. It has been shown in [17] that in fact
this defines a curved subspace known as Stiefel manifold. The
capacity of our approach to work with the more general setting
is illustrated later in empirical simulations (e.g., Fig. 4), where
d̂ �= d. In what follows, we will still mainly focus on the
simpler scenario, i.e., X̂ and X are of the same dimensions,
and are related under a linear transformation, which is a
reasonable assumption in many applications, and especially
so in computer vision tasks including object recognition and
detection.

Now, for an instance-label pair (x, y), consider a loss func-
tion l(fw(x), y) endowed with a linear form fw(x) = w�x,
and a regularizer Ω(w) of the model parameter w ∈ Rd.
We propose to formulate the induced optimization problem
of domain adaption as

min
Φ,w

Ω(w) + η1

m∑

j=1

l
(
fw(xj), yj

)
+ η2

n̂∑

i=1

l
(
fw(Φx̂i), ŷi

)

(2)

subjected to orthonormal constraints Φ ∈ SO(d), that is

ΦΦ� = I, Φ�Φ = I, det(Φ) = 1. (3)

In other words, the set of feasible Φ matrices forms the special
orthogonal group, SO(d).

A. Graph-Based Semi-supervised Domain Adaptation

Graph-based semi-supervised methods construct a problem
graph, G, whose nodes are the training instances (both labeled
and unlabeled) of the target domain, and edges encode nearest
neighbor relationships. Often times, the edges are weighted by
a kernel function to reflect the similarity between neighboring
examples. The semi-supervised learning problem can indeed
be posed as that of estimating a smooth function that respects
neighborhood relations on the graph. Let X denote the target
instance matrix of size d × n, containing both labeled and
unlabeled instances. Following [20] and others, the inductive
Laplacian graph regularizer ||w||2G is defined as

‖w‖2G := f�
w ΔGfw = w�(

XΔGX
�)
w (4)

where fw denotes the vector
[
fw(x1), . . . ,

fw(xm), . . . fw(xn)
]�

, ΔG ∈ Rn×n is the normalized
Laplacian of G. To incorporate unlabeled target training
examples into (2), we consider minimize the following
regularized risk:

min
Φ,w

Ω(w) + η1

m∑

j=1

l
(
fw(xj), yj

)

+η2
n̂∑

i=1

l
(
fw

(
Φx̂i

)
, ŷi

)
+ η3‖w‖2G (5)

subjected to proper constraints of (3).

B. Our Block Coordinate Descent Algorithm Using
Armijo Rule

The problem of (5) is nonconvex, which can nevertheless
be solved by considering a block coordinate descent algorithm
(e.g., [21]) that iteratively minimizes over Φ and w. For this
purpose, denote the w−related objective function

l1(w) := Ω(w) + η1

m∑

j=1

l(fw(xj), yj)

+ η2

n̂∑

i=1

l
(
fw

(
Φx̂i

)
, ŷi

)
+ η3w

�(
XΔGX

�)
w (6)

and the Φ−related objective, which is a loss function l : Φ ∈
Vd×d →R defined on SO(d)

l2(Φ) :=
n̂∑

i=1

l2
(
fw

(
Φx̂i

)
, ŷi

)
. (7)

Denote ∇Φl, a d × d matrix, as the matrix derivative
(i.e., Euclidean gradient) of the loss function l2(Φ) of (7) in
the local Euclidean space of Φ. Instead of explicitly minimize
over the Lagrangian of the above constrained optimization
problem of (7) subjected to (3), we consider a geodesic
algorithm that performs minimization by moving along the
underlying manifold.

Algorithm 1 presents a generic version of the proposed
domain adaptation algorithm by gradient descent with self-
tuning step sizes (i.e., λ1 and λ2) using the Armijo rule [19].
At each of the coordinate descent iterations, the model
parameter w is updated by gradient descent following the
usual optimization procedure in Rd [21]. To compute Φ, our
algorithm involves two basic steps: 1) compute the Riemannian
gradient by projecting the gradient onto the current tangent
space and 2) bring the Riemannian gradient onto manifold
along its geodesic curve by retraction.

For gradient projection, we have

Φ�∇̃Φl = skew
(∇ΦlΦ�)

(8)

which can be directly obtained by right multiplying Φ� with
both sides of (1). Consider simply the exponential map for
retraction mapping,RΦ(ρ) = Φ exp(−Φ�ρ), we have a closed
form update formula for the new Φ as

Φ := RΦ

(
η2 ∇̃Φl

)

= Φ exp
{− η2 skew

(∇ΦlΦ�)}
. (9)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Semi-supervised Domain Adaptation on
Manifolds: Semi-DA
Require: Parameters η1, η2, η3, and ε

Initialize step sizes λ1 ← 1 and λ2 ← 1
repeat

while l2(Φ)− l2
(
RΦ

(
2λ2η2 ∇̃Φl

)) ≥ λ2η2
∥
∥∇̃Φl

∥
∥2

F
do

λ2 ← 2λ2

end while
while l2(Φ)− l2

(
RΦ

(
λ2η2 ∇̃Φl

))
< λ2

2 η2
∥
∥∇̃Φl

∥
∥2

F
do

λ2 ← λ2
2

end while
Update Φ := RΦ

(
η2 ∇̃Φl

)

while l1(w) − l1
(
w − 2λ1η1∇wl1(w)

) ≥
λ1η1

∥
∥∇wl1(w)

∥
∥2

F
do

λ1 ← 2λ1

end while
while l1(w)−l1

(
w−λ1η1∇wl1(w)

)
< λ1

2 η1
∥
∥∇wl1(w)

∥
∥2

F
do
λ1 ← λ1

2
end while
Update w := w − λ1η1∇wl1(w)

until
∥
∥∇̃Φl

∥
∥2

F
< ε &

∥
∥∇wl1(w)

∥
∥2

F
< ε

Note other forms of retractions are also possible
[19, Ch. 4, p. 58]. Interestingly, for Φ ∈ SO(d), the
exponential map can alternatively be interpreted as
incorporating the Von Neumann divergence [22] term,
ΔF (Φ,Φt), into the minimization framework, thus the
Φ-related optimization problem becomes

min
Φ

ΔF (Φ,Φt) + η2

n̂∑

i=1

l
(
fw

(
Φx̂i

)
, ŷi

)
. (10)

This gives rise to the iterative matrix exponentiated gradient
update in [22], which is of the same form as the above
exponential map update.

C. Loss Functions

The proposed approach can work with a variety of loss
functions. Here, we focus only on the binary log loss, and
relegate to the appendix details of other often-used loss
functions, including, e.g., square, reverse prediction, and log
losses. Specifically, consider a binary classification scenario
with log loss and let Ω(w) := ‖w‖22/2, we arrive at the
following optimization problem:

min
w,Φ

1
2
‖w‖22 + η1

m∑

j=1

log
(
1 + e−yjx�

j w
)

+η2
n̂∑

i=1

log
(
1 + e−ŷix̂

�
i Φ�w

)
+ η3‖w‖2G (11)

subjected to (3). Here, l2(Φ) :=
∑n̂

i=1 log
(
1 + e−ŷix̂

�
i Φ�w

)
,

its gradient is

∇Φl2 = −
n̂∑

i=1

ŷix̂iw
�

1 + exp
(
ŷix̂�i Φw

) (12)

and the corresponding manifold gradient can be subsequently
computed by (1). On the other hand, we also have

l1(w) :=
1
2
‖w‖22 + η1

m∑

j=1

log
(
1 + e−yjx�

j w
)

+η2
n̂∑

i=1

log
(
1 + e−ŷix̂

�
i Φ�w

)
+ η3‖w‖2G (13)

and its gradient

∇wl1 =−η1
n∑

j=1

yjxj

1+exp
(
yjx�j w

)

−η2
n̂∑

i=1

ŷiΦ�x̂i

1+exp
(
ŷix̂�i Φw

) +
(
η3XΔGX

�+Id
)
w.

(14)

D. Convergence Analysis

We formulate the problem of semi-supervised domain adap-
tation as a constraint minimization problem with nonconvex
objective function. In the following, we show that Algorithm 1
is guaranteed to converge to local optimal solutions.

Gradient descent methods using Armijo rule in Euclid-
ean space Rn are shown (e.g., [23, Ch. 3]) to converge
to local fixed points under mild conditions. It is also well
known [19], [24] that on matrix manifolds they enjoy similar
convergence properties as their analogs in Euclidian space.
The proposed coordinate descent approach is guaranteed to
decrease the objective function value monotonically as itera-
tion increases: denote by L(Φ, w) our objective function, at
each iteration t we have L(Φt+1, wt) ≤ L(Φt, wt), as well as
L(Φt+1, wt+1) ≤ L(Φt+1, wt). As L is compact, this ensures
the limiting sequence produced by our algorithm will converge
to a fixed point.

E. Computational Analysis

At each iteration, the main computational load is clearly
about computing the retraction step. During the experiments,
the exponential map is used directly, where the key is to
compute the matrix exponential. In particular, we adopt the
MATLAB function expm(), which is an approximation that
uses the Pade method with scaling and squaring [25], and
is known as one of the most efficient approximation meth-
ods [26]. The two major factors are the Pade order s and the
scaling and squaring exponent e, where the overall complexity
is O((s+ e)d3) for both cases, with usually a large constant.
Additionally, it usually takes O(d3) to compute both matrix
multiplications and the Euclidean gradient for various loss
functions.

F. Multisource

Assume, we have access to D̂ source domains, and
each domain indexed by j ∈ {1, . . . , D̂} has n̂j exam-
ples. It is straightforward to generalize our approach to
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multisource domain adaptation, by considering an extended
version of (5) as

min
{Φ(j)},w

Ω(w) + η1

m∑

j=1

l
(
fw(xj), yj

)

+η2
D̂∑

j=1

n̂j∑

i=1

l
(
fw

(
Φ(j)(x̂(j)

i )
)
, ŷ

(j)
i

)
+ η3‖w‖2G

(15)

subjected to orthonormal constraints of matrices Φ(j). Its
solution is easily obtained as a variant of the aforementioned
derivations.

G. Nonlinear Extension

So far, we have mainly considered linear transformation
between the source and the target domains. As stated earlier,
our approach can also work with the more general nonlinear
scenario: for nonlinear transformation, each source instance
x is first lifted to a high d̂-dimensional vector space by
considering e.g., monomial basis x(i), x(i)x(i), x(i)x(j), . . .
up to order D, where x(i) and x(j) are used to refer to the
ith and jth dimension of an instance x, respectively. This
is followed by a linear map with dimensionality reduction
such that only a subspace from source is used to transform
to target vector space one-to-one, which implies d̂ ≥ d.
It has been shown in [17] that in fact this defines a curved
subspace known as Stiefel manifold. In particular, when d̂ = d,
it reduces to the special case of special orthogonal group.

IV. EMPIRICAL STUDIES

In this section, we first verify the motivations of our method
on two synthetic data sets, and then apply the method to
three real-world applications: cross-domain object recognition
where the source and target domains are from different image
modalities, cross-domain WiFi localization where the source
and target domains refer to data collected from different time
periods, and multisource sentiment classification where source
and target are concerning Amazon online customer reviews
from different product domains. In particular, the log loss
function is used for the synthetic, the object recognition,
and the sentiment classification experiments. To illustrate
the applicability of our method working with other loss
functions, we use the square loss in the WiFi localization
problem. Throughout the experiments, we set ε to 0.01, λ1

and λ2 to 1.0. To exploit unlabeled training instances from
target domain, G is constructed as a four-nearest neighbor
graph.

A. Synthetic Data

For the first synthetic data set, a source domain consists of
400 instances drawn from two classes with equal prior proba-
bilities (200 instances per class), where each class conditional
probability assumes a separate multivariate Gaussian distribu-
tion. In the same manner, an additional set of 400 instances,
which are referred to as a target domain, are sampled from
these two class dependent distributions, then mapped to the

Fig. 1. Accuracy changes with the difficult levels of the tasks. Here, the
difficult level is inversely related to the distance between the two classes’
Gaussian means.

target feature space under a random rotational transforma-
tion Φ as well as a random scaling and random translation
transformations along each dimension. The difficulty levels
of classification in each domain can be adjusted by moving
distance between the two Gaussian means, while fixing the
covariance matrices. Means (and covariance matrices) of the
source class distributions are obtained by random vector (and
matrix) generation, where specific care needs to be taken to
ensure positive definite or PD covariance matrices. A random
rotation transformation is then obtained by QR decomposition
of a random PD matrix. The above data generation pipeline
is executed to randomly generate 50 pairs of source and
target domain data sets, where each pair corresponds to one
cross-domain classification task. To simulate semi-supervised
setting, the algorithm is presented with all 400 labeled source
domain instances, together with only 40 labeled instances and
360 unlabeled instances from the target domain. The learned
model is evaluated on the unlabeled target domain instances.

For comparison methods, as shown in Fig. 1, semi-DA refers
to the proposed semi-supervised domain adaptation method
using log loss; DA is a reduction of semi-DA by dropping
the graph Laplacian regularizer, which can be referred to as a
supervised domain adaptation method; srcSVM uses the binary
SVM with source domain labeled data as input; tarSVM is the
binary SVM working with labeled data from the target domain
only; allSVM stands for the binary SVM with both source
domain and target domain labeled data as input; tarLapSVM
is the Laplacian SVM [20] incorporated with labeled and
unlabeled data from the target domain; allLapSVM is the
Laplacian SVM incorporated with labeled and unlabeled data
from both the source and target domains. As expected, srcSVM
and allSVM perform poorly by ignoring the transfer nature of
the two domains, while by explicitly estimating the underlining
rotation, our semi-DA and DA perform significantly better
throughout different difficulty levels.

For the second synthetic data set, we first generate a nor-
malized two-moon data set (zero-mean and identity covariance
matrix) as a source domain, where each moon corresponds to
a class, as shown on the left-hand side in Fig. 2. We then
map the source two-moon data set to the target space under
a random rotational transformation Φ as well as a random
shifting transformation along each dimension. The mapped
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Fig. 2. Example of 2-D two-moon data set. (a) Source and target two-moon
data sets. (b) Source and target two-moon data sets after applying the learned
transformation.

two-moon data set is considered as a target domain, as shown
on the right-hand side in Fig. 2. Similar to the semi-supervised
setting of the first synthetic data set, for the target domain data,
we randomly sample only one instance from each moon as
labeled data, and consider the rest as unlabeled target domain
data. The evaluation is performed on the unlabeled target
domain data. Fig. 2 shows the result of semi-DA on the two-
moon data sets shown in Fig. 2, where we first normalize the
target domain data, and then perform semi-DA on the source
and target domain data to learn a rotational transformation
for the source domain data, and finally shift the transformed
source domain data based on the originally estimated mean
and covariance matrix of the target domain instances. As can
be observed, the two moons of the source and target domain
are aligned correctly, which is very helpful for classification
in the target domain.

Based on the above data generation pipeline, we randomly
generate 50 pairs of source and target domain data sets
and their corresponding cross-domain classification tasks. The
average results of all comparison methods are shown in
Table I. From the table, we can observe that different from
Fig. 1, the semi-supervised learning method tarLapSVM only
with target domain data performs better than the supervised
domain adaptation method DA. The reason may be that the
manifold assumption holds in the target domain, exploiting

Fig. 3. Comparison results under varying distances between the source and
target two-moon data.

the manifold structure from the unlabeled data may signifi-
cantly boost the classification performance even though the
number of labeled data is small. However, since the manifold
structures between the source and target domains are different,
allLapSVM, which applies LapSVM on the combination of
the source and target domain data without adaption, results
in poor classification accuracy. This implies that to use the
labeled source domain data for classification in the target
domain, a transformation of the source domain is necessary.
The proposed semi-DA is able to learn a transformation
for adaption as well as exploit the manifold structure from
the unlabeled target domain data, thus can achieve the best
classification performance.

We further conduct a third experiment by producing a
set of 2-D two-moon data sets with varying distances. As
shown in Fig. 3, all the comparison methods are insensitive
to the change of distances. Not surprisingly, the semi-DA
method produces the best results by exploiting unlabeled data,
while DA performs on par or slightly better than tarLapSVM
and tarSVM, which are then better performed than the rest
methods.

For the last experiment, we consider a scenario where
the two-moon points of the source domain are draw from a
3-D space, while the two-moon of the target domain resides
in certain 2-D plane. This can be regarded as a version of the
nonlinear extension case. As shown in Fig. 4, our method can
still perform reasonably well under this scenario.

B. Cross-Domain Object Recognition

Our method is also applied to cross-domain object recog-
nition using the benchmark data set in [14] and [15], which
contains images from 31 object categories and three different
image domains. The first domain contains product images
downloaded from Amazon (denoted as amazon in the sequel),
which are in a canonical pose with a white background. The
second domain contains images that are taken with a digital
SLR camera in an office (denoted as dslr). These images
are high-resolution with varying poses and backgrounds. The
third domain contains images, which are taken with a webcam
using a flash, which are of low-resolution with varying poses
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TABLE I

COMPARISON EXPERIMENTS ON THE TWO-MOON DATA SET IN TERMS OF ACCURACY (%)

Fig. 4. Example of 3-D two-moon data set. (a) Source and target two-moon data sets. (b) Source and target two-moon data sets after applying the learned
linear transformation.

and backgrounds (denoted as webcam). Six cross-domain
object recognition tasks are considered: amazon versus dslr,
amazon versus webcam, webcam versus dslr, webcam versus
amazon, dslr versus amazon, dslr versus webcam, where the
word before versus corresponds with the source domain and
the word after versus corresponds with the target domain.
As introduced in [14], all images are resized to the same width
and converted to gray-scale, and are represented by SURF and
SIFT features.

As shown in Table II, we compare our method (the semi-
supervised log loss variant) with two state-of-the-art meth-
ods on this data set, namely Symm [14] and Asymm [15].
Both Symm and Asymm are based on metric learning with
cross-domain constraints. Symm aims to learn a symmetric
transformation to project the source and target domain data
into a domain-invariant space, while Asymm aims to learn
an asymmetric transformation to map the target domain data
to the source domain. Both of them can be referred to as
supervised domain adaptation methods. We use a radial basis
function or RBF kernel for Symm and Asymm with width
σ = 1 and use 1NN as the base classifier for Symm and
Asymm because of its good performance reported in [14]
and [15]. Overall, our method performs significantly better
than the Symm method and on par with the Asymm method.
Note both Symm and Asymm are dedicated methods [14],
[15] for addressing the object recognition problem using this
particular data set, while our proposed method is more general-
purpose.

C. Cross-Domain WiFi Localization

We apply to the benchmark of cross-domain indoor WiFi
localization [11]. The WiFi localization data set contains
labeled WiFi data collected in two time period T1 and
T2, which are considered as two different domains. Output

TABLE II

COMPARISON OF OBJECT RECOGNITION ACCURACY (%)

TABLE III

WIFI LOCALIZATION DATA SET WITH AVERAGE

ERROR DISTANCE (UNIT: m)

labels are the corresponding locations where the WiFi data
are received. Therefore, the label values are 2-D (in a floor)
and continuous. In this data set, we only construct one cross-
domain WiFi localization task T1 versus T2, because the data
size of the domain T1 is much smaller than that of the domain
T2. As the WiFi data are rather noisy, we first apply kernel
principal component analysis or PCA using Laplace kernel
with width σ = 1 on the WiFi data for denoising as proposed
in [11]. The reduced dimensionality of the WiFi data is 20. The
examples from target domain are further split into five disjoint
folds. In each of the experiments, we alternately adopt one fold
for training and the rest for testing. We also compare with
our supervised domain adaptation variant, DA. The SSTCA
method has been shown to be effective for cross-domain WiFi
localization [11]. Following [11], we use a Laplace kernel with
width σ = 10, set the reduced dimensionality of SSTCA to 20,
and adopt a least square regression loss (i.e., Frobenius Norm).
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TABLE IV

CLASSIFICATION ACCURACY (%) OF MULTISOURCE DOMAIN ADAPTATION ON SENTIMENT DATA SET

As shown in Table III, our method DA already demonstrates
superior performance on this data set. Moreover, it shows that
further improvement has been achieved by semi-DA, which
does not come as a surprise, as the unlabeled target instances
are also used here.

D. Multisource Domain Adaptation
for Sentiment Classification

So far, we have displayed the capacity of our algorithm to
work with single-source domain adaptation problems. Here,
we tackle the problem of multisource domain adaptation for
sentiment classification, and compare with a recent method
(2SW-MDA) [27] that requires a very little label information
from the target domain. For this, we use the benchmark of [2]
containing a collection of product reviews from Amazon. The
reviews cover four product domains: books, dvds, electronics,
and kitchen appliances. Each review has been annotated as
negative or positive review sentiment polarity according to
users’ rating scores. In each domain, there are 1000 positive
and 1000 negative reviews. Following the protocol of [27],
the data set is preprocessed to reduce its feature dimension
to 200, and only 1 labeled instance per class is used for
target domain. Note that, the intention of this experiment
is to make a fair comparison with existing state-of-the-
art instead of solving the sentiment classification problem.
On this problem, we compare our semi-DA method with
(2SW-MDA) [27] as well as the suite of comparison methods
reported in [27], including a SVM baseline (SVM-C), Locally
weighted ensemble [28], kernel ensemble [29], kernel mean
matching [30], SSTCA [11], and DAM [16]. The results of
these comparison methods and the 2SW-MDA method are
directly extracted from Table I of [27]. There are four tasks as
presented in the rows of Table IV, where each task considers
a classification scenario by adapting data from the rest three
domains to the current domain. Overall, our method exhibits
superior performance on two out of four tasks, and is shown to
perform on par with [27] on the kitchen task. We attribute this
performance gain to the ability of our approach to jointly learn
the transformation function on a manifold and the prediction
model.

V. OUTLOOK AND DISCUSSION

In this paper, we formulate the semi-supervised domain
adaptation problem as learning with a transformation func-
tion and a prediction model under manifold constraints. We
propose an iterative algorithm that jointly solves the mani-
fold optimization problem by block coordinate descent with

adaptive step-size. The algorithm can be easily adapted to
work with different loss functions and prediction problems.
Empirical evidence also supports the competitiveness of the
proposed algorithm. For future work, we plan to develop
a Newton-type update algorithm and to work with a broader
range of practical domain adaptation problems.

APPENDIX

Our framework can work with a variety of loss functions;
here, we discuss the square and log losses.

A. Square Loss

In this section, let X denote the target instance matrix of
size n× d, X̂ the source instance matrix of size n̂× d, Φ the
d× d linear transformation matrix, W a d× k weight matrix.
Let Y and Ŷ be the corresponding label matrices of size
n × k and size n̂ × k, respectively. Now, consider a square
loss problem

min
Φ,W

1
2
‖W‖2F +

η1
2
‖XW − Y ‖2F +

η2
2
‖X̂ΦW − Ŷ ‖2F

subjected to constraints (3).
The reverse prediction framework of [31] provides good

insights especially for cases where there exist unlabeled target
instances. To start with, consider the fully labeled case and by
(5) of [31], we have the following reverse prediction problem:

min
Φ,U

1
2
‖U‖2F +

η1
2
‖X − Y U‖2F +

η2
2
‖X̂Φ− Ŷ U‖2F

subjected to constraints (3), where U is a matrix of k × d.
Now, consider the unlabeled target examples, which can be

denoted by XU , a (n−m)× d matrix. Let the corresponding
label be Z , a matrix of size (n − m) × k. The forward
prediction problem is

min
Φ,W,Z

1
2
‖W‖2F +

η1
2
‖XW − Y ‖2F +

η2
2
‖X̂ΦW − Ŷ ‖2F
+ηU‖XUW − Z‖2F .

Note the third term is not helpful as Z can always be set to
arbitrarily close to any W . Instead, we are interested in its
reverse problem, which becomes that of

min
Φ,U,Z

1
2
‖U‖2F +

η1
2
‖X − Y U‖2F +

η2
2
‖X̂Φ− Ŷ U‖2F

+
ηU

2
‖XU − ZU‖2F

subjected to constraints (3).
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1) Reverse Prediction: Consider the following reverse
prediction problem:

min
Φ,U

1
2
‖U‖2F +

η1
2
‖X − Y U‖2F +

η2
2
‖X̂Φ− Ŷ U‖2F (16)

subjected to (3), where U is a matrix of k × d.
Consider the related loss function defined in (16),

l(Φ) = 1/2‖X̂Φ− Ŷ U‖2F , we have

∇Φl(Φ) = X̂�(X̂Φ− Ŷ U). (17)

By (1) and (17)

∇̃Φl = X̂�(X̂Φ− Ŷ U)− Φ(Φ�X̂� − U�Ŷ �)X̂Φ. (18)

Following (8) and (9), we have

Pt = exp
{− η2 skew

(
X̂�(X̂Φ− Ŷ U)Φ�)}

. (19)

Similarly, let l(U) = 1/2‖X − Y U‖2F + η2/2η1‖X̂Φ −
Ŷ U‖2F . It is easy to check that

∇U l(U)=
(

Y �Y +
η2
η1
Ŷ �Ŷ

)

U−
(

Y �X+
η2
η1
Ŷ �X̂Φ

)

.

(20)

Similar to forward prediction, a possible initial guess of U

can be U =
(
Y �Y

)−1
Y �X .

2) Semi-supervised Learning: Now, consider the unlabeled
target examples, which can be denoted by XU , a (n−m)× d
matrix. The optimization problem becomes that of

min
Φ,U,Z

1
2
‖U‖2F +

η1
2
‖X − Y U‖2F +

η2
2
‖X̂Φ− Ŷ U‖2F

+
η3
2
‖XU − ZU‖2F (21)

subjected to (3). Note here X is a m× d matrix, Y a m× k
matrix, and Z a (n−m)× k matrix. We have

∇U l(U) =
(

Y �Y +
η2
η1
Ŷ �Ŷ +

η3
η1
Z�Z

)

U

−
(

Y �X +
η2
η1
Ŷ �X̂Φ +

η3
η1
Z�XU

)

. (22)

In addition, by adopting a similar strategy, we have l(Z) =
1/2‖XU − ZU‖2F , so Z can also be computed as

∇Z l(Z) = (ZU −XU )U� (23)

with an initial value Z = XUU
�(UU�)−1.

B. Log Loss

Log loss is the loss function used in logistic regression
problems.

1) Binary Classification:

min
w,Φ

η1

n∑

j=1

log
(
1 + exp

(− yix
�
i w

))

+η2
n̂∑

i=1

log
(
1 + exp

(− ŷix̂
�
i Φw

))
(24)

subjected to (3). Here, l2(Φ) :=
∑n̂

i=1 log(1 +
exp(−ŷix̂

�
i Φw)), and gradient is

∇Φl = −
n̂∑

i=1

ŷix̂iw
�

1 + exp
(
ŷix̂�i Φw

) . (25)

Its manifold gradient is subsequently computed by (1).
On the other hand, we also have

l1(w) := η1

n∑

j=1

log
(
1 + exp

(− yjx
�
j w

))

+η2
n̂∑

i=1

log
(
1 + exp

(− ŷix̂
�
i Φw

))
(26)

and its gradient

∇wl1 = −η1
n∑

j=1

yjxj

1 + exp
(
yjx�j w

)

−η2
n̂∑

i=1

ŷiΦ�x̂i

1 + exp
(
ŷix̂�i Φw

) . (27)

2) Multiclass Classification: For an (instance, label) pair
(x, y), denote its feature function as γ(x, y). The multiclass
loss amounts to

log
(

1 +
∑

y′ �=y

expγ(x,y′)�w−γ(x,y)�w

)

. (28)

It can be shown that the gradient with respect to
w is

∑
y′ px(y′)γ(x, y′) − γ(x, y), with px(y′) :=

expγ(x, y′)�w/
∑

y′′ γ(x, y′′)�w, and the gradient with
respect to Φ can be derived similarly.

In our setting, consider the objective function

min
w,Φ

η1

n∑

j=1

log
(

1 +
∑

y′
j �=yj

expγ(xj,y′
j)

�w−γ(xj,yj)
�w

)

+η2
n̂∑

i=1

log
(

1 +
∑

ŷ′
i �=ŷi

expγ(x̂i,ŷ
′
i)

�Φw−γ(x̂i,ŷi)
�Φw

)

(29)

subjected to Φ ∈ SO(d) (i.e., (3)). Here, l2(Φ) :=
∑n̂

i=1 log
(
1+

∑
ŷ′

i �=ŷi
expγ(x̂i,ŷ

′
i)

�Φw−γ(x̂i,ŷi)
�Φw

)
, and gra-

dient is

∇Φl =
n̂∑

i=1

( ∑

ŷ′
i

px̂i(ŷ
′
i)γ(x̂i, ŷ

′
i)w

� − γ(x̂i, ŷi)w�
)

(30)

with ppx̂i(ŷ′i) := exp γ(x̂i, ŷ
′
i)

�Φw/
∑

ŷ′′
i
γ(x̂i, ŷ

′′
i )�Φw. Its

manifold gradient is subsequently computed by (1).
On the other hand, we also have

l1(w) := η1

n∑

j=1

log
(

1 +
∑

y′
j �=yj

expγ(xj,y′
j)

�w−γ(xj,yj)
�w

)

+η2
n̂∑

i=1

log
(

1+
∑

ŷ′
i �=ŷi

expγ(x̂i,ŷ
′
i)

�Φw−γ(x̂i,ŷi)
�Φw

)

(31)
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and its gradient being

∇wl1 = η1

n∑

j=1

( ∑

y′
j

pxj (y
′
j)γ(xj , y

′
j)− γ(xj , yj)

)

−η2
n̂∑

i=1

( ∑

ŷ′
i

px̂i(ŷ
′
i)γ(x̂i, ŷ

′
i)− γ(x̂i, ŷi)

)

(32)

with pxj(y′j) := exp γ(xj , y
′
j)

�Φw/
∑

y′′
j
γ(xj , y

′′
j )�Φw.
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